Comparison of LID and Electrical Injection Regeneration of PERC and Al-BSF Solar Cells from a Cz-Si Ingot

Author:

Ding Siqi,Yang Chen,Qin Cheng,Ai BinORCID,Sun Xiaopu,Yang Jianghai,Liu Quan,Liang Xueqin

Abstract

In order to study the effect of device structures and silicon wafer positions on light-induced degradation (LID) and regeneration, five groups of industrial PERC and Al-BSF solar cells were fabricated by using silicon wafers from different positions of a B-doped Czochralski silicon (Cz-Si) ingot. Then, the cells were subjected to a dark annealing (200 °C, 30 min), the first LID (45 °C, 1 sun, 12 h), an electrical injection regeneration (175 °C, 18 A, 30 min) and the second LID (45 °C, 1 sun, 12 h) in order, and the variations of performance of the cells with processing time were measured. It was found that after the electrical injection regeneration, the efficiency losses of PERC cells decreased from 1.28–1.76%absolute in the first LID to 0.09–0.16%absolute in the second LID, while those of Al-BSF cells decreased from 0.3–0.66%absolute in the first LID to 0 in the second LID. The efficiency losses of PERC cells during the first LID were caused by the co-action of B-O-defect-induced LID (BO-LID) and dissociation of Fe-B pairs, and the latter contributed 5.81–9.56% of the efficiency loss, while those of Al-BSF cells during the first LID were almost contributed by BO-LID solely. For both kinds of cells, the cells made from the silicon wafers from middle of the ingot had the best performance throughout the experiment. In addition, the LID and regeneration treatments only affected the spectral response of the cells in the wavelength larger than 700 nm.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3