Predictive Energy Management Strategy for Range-Extended Electric Vehicles Based on ITS Information and Start–Stop Optimization with Vehicle Velocity Forecast

Author:

Lin Weiyi,Zhao Han,Zhang Bingzhan,Wang Ye,Xiao Yan,Xu Kang,Zhao Rui

Abstract

Range-extended Electric Vehicles (REVs) have become popular due to their lack of emissions while driving in urban areas, and the elimination of range anxiety when traveling long distances with a combustion engine as the power source. The fuel consumption performance of REVs depends greatly on the energy management strategy (EMS). This article proposes a practical energy management solution for REVs based on an Adaptive Equivalent Fuel Consumption Minimization Strategy (A-ECMS), wherein the equivalent factor is dynamically optimized by the battery’s State of Charge (SoC) and traffic information provided by Intelligent Transportation Systems (ITS). Furthermore, a penalty function is incorporated with the A-ECMS strategy to achieve the quasi-optimal start–stop control of the range extender. The penalty function is designed based on more precise vehicle velocity forecasting through a nonlinear autoregressive network with exogeneous input (NARX). A model of the studied REV is established in the AVL Cruise environment and the proposed energy management strategy is set up in Matlab/Simulink. Lastly, the performance of the proposed strategy is evaluated over multiple Worldwide Light-duty Test Cycles (WLTC) and real-world driving cycles through model simulation. The simulation conditions are preset such that the range extender must be switched on to finish the planned route. Compared with the basic Charge-Depleting and Charge-Sustaining (CD-CS) strategy, the proposed A-ECMS strategy achieves a fuel-consumption benefit of up to 9%. With the implementation of range extender start–stop optimization, which is based on velocity forecasting, the fuel saving rate can be further improved by 6.7% to 18.2% compared to the base A-ECMS. The proposed strategy is energy efficient, with a simple structure, and it is intended to be implemented on the studied vehicle, which will be available on the market at the end of October 2022.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3