Magnetic Field Analysis and Development of Disk Axial–Radial Hybrid Excitation Generator for Range Extenders in Extended-Range Electric Vehicles

Author:

Ma Jianwei12

Affiliation:

1. Department of Automotive Engineering, Hebei Vocational University of Technology and Engineering, Xingtai 054000, China

2. Hebei Special Vehicle Modification Technology Innovation Center, Xingtai 054000, China

Abstract

Extended-range electric vehicles have both a motor and an engine; the motor is used for driving, and the engine generates electricity via a range extender, which is connected to the motor. The permanent magnet generator is part of the range extender, and the output voltage is controlled by adjusting the engine’s speed; the generator’s rotating speed fluctuates, meaning that the engine’s fuel consumption increases. Meanwhile, considering the limited axial dimension of the range extender, an axial–radial disk hybrid generator that combines excitation is developed, making full use of the radial space; at the same time, the output voltage is adjusted without changing the engine’s speed. In this study, the generator’s magnetic field hybrid principle, the path of permanent magnetic circuit, and the electric excitation magnetic circuit under different loads were analyzed and verified via the finite element method. A comparative analysis method was also used, the technical index of the disk hybrid excitation generator was determined, and the main structural parameters were designed using theoretical calculations. The three-dimensional finite element model was established based on the results, and a finite element analysis was performed. An equivalent magnetic circuit model was established, and the formulas of synthetic permeability, leakage permeability, and effective permeability were determined. The finite element method (numerical method) and equivalent magnetic circuit method (analytical method) were used to calculate the synthetic magnetic fields of the air gap, rotor yoke, and rotor teeth under different excitation currents. A comparison between the two methods verified the design utility. The conclusions provide a valuable point of reference for the development of the disk hybrid excitation generator for use in range extenders in extended-range electric vehicles.

Funder

Colleges and Universities of Hebei Province

Xingtai Youth Talent Plan Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3