Genome-Wide Association Study Reveals Additive and Non-Additive Effects on Growth Traits in Duroc Pigs

Author:

Xue YahuiORCID,Liu Shen,Li WeiningORCID,Mao Ruihan,Zhuo Yue,Xing Wenkai,Liu Jian,Wang Chuang,Zhou LeiORCID,Lei Minggang,Liu Jianfeng

Abstract

Growth rate plays a critical role in the pig industry and is related to quantitative traits controlled by many genes. Here, we aimed to identify causative mutations and candidate genes responsible for pig growth traits. In this study, 2360 Duroc pigs were used to detect significant additive, dominance, and epistatic effects associated with growth traits. As a result, a total number of 32 significant SNPs for additive or dominance effects were found to be associated with various factors, including adjusted age at a specified weight (AGE), average daily gain (ADG), backfat thickness (BF), and loin muscle depth (LMD). In addition, the detected additive significant SNPs explained 2.49%, 3.02%, 3.18%, and 1.96% of the deregressed estimated breeding value (DEBV) variance for AGE, ADG, BF, and LMD, respectively, while significant dominance SNPs could explain 2.24%, 13.26%, and 4.08% of AGE, BF, and LMD, respectively. Meanwhile, a total of 805 significant epistatic effects SNPs were associated with one of ADG, AGE, and LMD, from which 11 sub-networks were constructed. In total, 46 potential genes involved in muscle development, fat deposition, and regulation of cell growth were considered as candidates for growth traits, including CD55 and NRIP1 for AGE and ADG, TRIP11 and MIS2 for BF, and VRTN and ZEB2 for LMD, respectively. Generally, in this study, we detected both new and reported variants and potential candidate genes for growth traits of Duroc pigs, which might to be taken into account in future molecular breeding programs to improve the growth performance of pigs.

Funder

China Agriculture Research System of MOF and MARA

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3