Integrative Investigation of Root-Related mRNAs, lncRNAs and circRNAs of “Muscat Hamburg” (Vitis vinifera L.) Grapevine in Response to Root Restriction through Transcriptomic Analyses

Author:

Liu JingjingORCID,Li Hui,Zhang Lipeng,Song Yue,He Juan,Xu Wenping,Ma Chao,Ren Yi,Liu Huaifeng

Abstract

Root restriction is a physical and ecological cultivation mode which restricts plant roots into a limited container to regulate vegetative and reproduction growth by reshaping root architecture. However, little is known about related molecular mechanisms. To uncover the root-related regulatory network of endogenous RNAs under root restriction cultivation (referred to RR), transcriptome-wide analyses of mRNAs, long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) involved in root development were performed. During root development, RR treatment had a positive effect on root weight, typically, young roots were significantly higher than conventional cultivation (referred to NR) treatment, suggesting that root architecture reconstruction under RR was attributed to the vigorous induction into lateral roots. Furthermore, a total of 26,588 mRNAs, 1971 lncRNAs, and 2615 circRNAs were identified in root of annual “Muscat Hamburg” grapevine by the transcriptomic analyses. The expression profile of mRNAs, lncRNAs and circRNA were further confirmed by the quantitative real-time PCR (RT-qPCR). Gene ontology enrichment analysis showed that a majority of the differentially expressed mRNAs, lncRNAs and circRNAs were enriched into the categories of cellular process, metabolic process, cell part, binding, and catalytic activity. In addition, the regulatory network of endogenous RNAs was then constructed by the prediction of lncRNA-miRNA-mRNA and circRNA-miRNA-mRNA network, implying that these RNAs play significant regulatory roles for root architecture shaping in response to root restriction. Our results, for the first time, the regulatory network of competitive endogenous RNAs (ceRNAs) functions of lncRNA and circRNA was integrated, and a basis for studying the potential functions of non-coding RNAs (ncRNAs) during root development of grapevine was provided.

Funder

the Shanghai municipal key task projects of "Prospering Agriculture by Science and Technology Plan"

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3