Author:
Li Hui,Gao Zhen,Zahid Muhammad Salman,Li Dongmei,Javed Hafiz Umer,Wang Lei,Song Shiren,Zhao Liping,Xu Wenping,Zhang Caixi,Ma Chao,Wang Shiping
Abstract
Root restriction cultivation (RRC) can influence plant root architecture, but its root phenotypic changes and molecular mechanisms are still unknown. In this study, phenotype observations of grapevine root under RRC and control cultivation (nRC) at 12 time points were conducted, and the root phenotype showed an increase of adventitious and lateral root numbers and root tip degeneration after RRC cultivation from 70 days after planting (DAP). The 70 and 125 DAP sampling of two different cultivations, named nR70, RR70, nR125, and RR125, were selected for small RNA sequencing. A total of 153 known miRNAs and 119 predicted novel miRNAs were obtained. Furthermore, BLAST was used to predict the novel miRNAs with miRBase databases using the default parameters; 96 of the 119 predicted novel miRNAs were similar to other species, and the remaining 23 grapevine-specific novel miRNAs were obtained. There were 26, 33, 26, and 32 miRNAs that were differentially expressed in different comparison groups (RR70 vs. nR70, RR125 vs. nR125, nR125 vs. nR70 and RR125 vs. RR70). Target genes prediction of differentially expressed miRNAs was annotated on a variety of biological processes, and 24 participated in root development. Moreover, multiple miRNAs were found to jointly regulate lateral root development under root restriction conditions. The miRNA expression pattern comparison between RRC and nRC may provide a framework for the future analysis of miRNAs associated with root development in grapevine.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Yunnan Province
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献