Population Structure of a Worldwide Collection of Tropical Japonica Rice Indicates Limited Geographic Differentiation and Shows Promising Genetic Variability Associated with New Plant Type

Author:

Singh Vikram JeetORCID,Bhowmick Prolay KumarORCID,Vinod Kunnummal KurungaraORCID,Krishnan Subbaiyan Gopala,Nandakumar Shekharappa,Kumar Amit,Kumar Manoj,Shekhawat Sonu,Dixit Brijesh Kumar,Malik Ankit,Ellur Ranjith Kumar,Bollinedi Haritha,Nagarajan Mariappan,Singh Ashok Kumar

Abstract

Abating the approaching yield plateau in rice requires taking advantage of potential technologies that requires knowledge on genetic diversity. Hybrid breeding, particularly in indica rice, requires the recruitment of large genetic variability from outside because the available genetic diversity of the cultivated pool has already been utilized to a great extent. In this study, we examined an assembly of 200 tropical japonica lines collected worldwide for population genetic structure and variability in yield-associated traits. Tested along with 30 indica and six wild rice lines belonging to India, the tropical japonica lines indicated great phenotypic variability, particularly related to new plant type (NPT) phenology, and formed six clusters. Furthermore, a marker-based characterization using a universal diversity marker panel classified the genotype assembly into four clusters, of which three encompassed tropical japonica lines, while the last cluster included mostly indica lines. The population structure of the panel also revealed a similar pattern, with tropical japonica lines forming three subpopulations. Remarkable variation in the allelic distribution was observed between the subpopulations. Superimposing the geographical sources of the genotypes over the population structure did not reveal any pattern. The genotypes sourced closer to the center of origin of rice showed relatively little diversity compared with the ones obtained from other parts of the world, suggesting migration from a common region of origin. The tropical japonica lines can be a great source of parental diversification for hybrid development after confirming the presence of widely compatible genes.

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3