Abstract
The brain is considered to be an extremely sensitive tissue to hypoxia, and the brain of fish plays an important role in regulating growth and adapting to environmental changes. As an important aquatic organism in northern China, the economic yield of Takifugu rubripes is deeply influenced by the oxygen content of seawater. In this regard, we performed RNA-seq analysis of T. rubripes brains under hypoxia and normoxia to reveal the expression patterns of genes involved in the hypoxic response and their enrichment of metabolic pathways. Studies have shown that carbohydrate, lipid and amino acid metabolism are significant pathways for the enrichment of differentially expressed genes (DEGs) and that DEGs are significantly upregulated in those pathways. In addition, some biological processes such as the immune system and signal transduction, where enrichment is not significant but important, are also discussed. Interestingly, the DEGs associated with those pathways were significantly downregulated or inhibited. The present study reveals the mechanism of hypoxia tolerance in T. rubripes at the transcriptional level and provides a useful resource for studying the energy metabolism mechanism of hypoxia response in this species.
Funder
National Key R&D Program of China、China Agriculture Research System of MOF and MARA、Key Field Innovation Team Project of Dalian City, China、Innovation Team Project of Dalian Ocean University, China
Subject
Genetics (clinical),Genetics
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献