First neurotranscriptome of adults Tambaquis (Colossoma macropomum) with characterization and differential expression between males and females

Author:

Miranda Josy,Veneza Ivana,Ferreira Charles,Santana Paula,Lutz Italo,Furtado Carolina,Pereira Patrick,Rabelo Luan,Guerreiro-Diniz Cristovam,Melo Mauro,Sampaio Iracilda,Vallinoto Marcelo,Evangelista-Gomes Grazielle

Abstract

AbstractThe Tambaqui is one of the most representative Amazon fish species, being highly exploited in fisheries, aquaculture and as a research model. Nonetheless, data about functional genome are still required to evaluate reproductive and nutrition parameters as well as resistance to pathogens. The of next-generation sequencing has allows assessing the transcriptional processes in non-model species by providing comprehensive gene collections to be used as a database in further genomic applications and increased performance of captive populations. In this study, we relied on RNAseq approach to generate the first transcriptome of the telencephalon from adult males and females of Colossoma macropomum, resulting in a reference dataset for future functional studies. We retrieved 896,238 transcripts, including the identification of 267,785 contigs and 203,790 genes. From this total, 91 transcripts were differentially expressed, being 63 and 28 of them positively regulated for females and males, respectively. The functional annotation resulted in a library of 40 candidate genes for females and 20 for males. The functional enrichment classes comprised reproductive processes (GO:0,048,609; GO:0,003,006; GO:0,044,703; GO:0,032,504; GO:0,019,953) being related to sex differentiation (e.g., SAFB) and immune response (e.g., SLC2A6, AHNAK, NLRC3, NLRP3 and IgC MHC I alpha3), thus indicating that the genes in the neurotranscriptome of Tambaqui participate in sex differentiation and homeostasis of captive specimens. These data are useful to design the selection of genes related to sex determination and animal welfare in raising systems of Tambaqui.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3