A Novel 3-Gene Signature for Identifying COVID-19 Patients Based on Bioinformatics and Machine Learning

Author:

Lai GuichuanORCID,Liu HuiORCID,Deng Jielian,Li Kangjie,Xie Biao

Abstract

Although many biomarkers associated with coronavirus disease 2019 (COVID-19) were found, a novel signature relevant to immune cells has not been developed. In this work, the “CIBERSORT” algorithm was used to assess the fraction of immune infiltrating cells in GSE152641 and GSE171110. Key modules associated with important immune cells were selected by the “WGCNA” package. The “GO” enrichment analysis was used to reveal the biological function associated with COVID-19. The “Boruta” algorithm was used to screen candidate genes, and the “LASSO” algorithm was used for collinearity reduction. A novel gene signature was developed based on multivariate logistic regression analysis. Subsequently, M0 macrophages (PRAUC = 0.948 in GSE152641 and PRAUC = 0.981 in GSE171110) and neutrophils (PRAUC = 0.892 in GSE152641 and PRAUC = 0.960 in GSE171110) were considered as important immune cells. Forty-three intersected genes from two modules were selected, which mainly participated in some immune-related activities. Finally, a three-gene signature comprising CLEC4D, DUSP13, and UNC5A that can accurately distinguish COVID-19 patients and healthy controls in three datasets was constructed. The ROCAUC was 0.974 in the training set, 0.946 in the internal test set, and 0.709 in the external test set. In conclusion, we constructed a three-gene signature to identify COVID-19, and CLEC4D, DUSP13, and UNC5A may be potential biomarkers for COVID-19 patients.

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3