MicrobiomeGWAS: A Tool for Identifying Host Genetic Variants Associated with Microbiome Composition

Author:

Hua Xing,Song Lei,Yu Guoqin,Vogtmann Emily,Goedert James J.,Abnet Christian C.,Landi Maria Teresa,Shi Jianxin

Abstract

The microbiome is the collection of all microbial genes and can be investigated by sequencing highly variable regions of 16S ribosomal RNA (rRNA) genes. Evidence suggests that environmental factors and host genetics may interact to impact human microbiome composition. Identifying host genetic variants associated with human microbiome composition not only provides clues for characterizing microbiome variation but also helps to elucidate biological mechanisms of genetic associations, prioritize genetic variants, and improve genetic risk prediction. Since a microbiota functions as a community, it is best characterized by β diversity; that is, a pairwise distance matrix. We develop a statistical framework and a computationally efficient software package, microbiomeGWAS, for identifying host genetic variants associated with microbiome β diversity with or without interacting with an environmental factor. We show that the score statistics have positive skewness and kurtosis due to the dependent nature of the pairwise data, which makes p-value approximations based on asymptotic distributions unacceptably liberal. By correcting for skewness and kurtosis, we develop accurate p-value approximations, whose accuracy was verified by extensive simulations. We exemplify our methods by analyzing a set of 147 genotyped subjects with 16S rRNA microbiome profiles from non-malignant lung tissues. Correcting for skewness and kurtosis eliminated the dramatic deviation in the quantile–quantile plots. We provided preliminary evidence that six established lung cancer risk SNPs were collectively associated with microbiome composition for both unweighted (p = 0.0032) and weighted (p = 0.011) UniFrac distance matrices. In summary, our methods will facilitate analyzing large-scale genome-wide association studies of the human microbiome.

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3