Vacuolal and Peroxisomal Calcium Ion Transporters in Yeasts and Fungi: Key Role in the Translocation of Intermediates in the Biosynthesis of Fungal Metabolites

Author:

Martín Juan F.

Abstract

The intracellular calcium content in fungal cells is influenced by a large number of environmental and nutritional factors. Sharp changes in the cytosolic calcium level act as signals that are decoded by the cell gene expression machinery, resulting in several physiological responses, including differentiation and secondary metabolites biosynthesis. Expression of the three penicillin biosynthetic genes is regulated by calcium ions, but there is still little information on the role of this ion in the translocation of penicillin intermediates between different subcellular compartments. Using advanced information on the transport of calcium in organelles in yeast as a model, this article reviews the recent progress on the transport of calcium in vacuoles and peroxisomes and its relation to the translocation of biosynthetic intermediates in filamentous fungi. The Penicillium chrysogenum PenV vacuole transporter and the Acremonium chrysogenum CefP peroxisomal transporter belong to the transient receptor potential (TRP) class CSC of calcium ion channels. The PenV transporter plays an important role in providing precursors for the biosynthesis of the tripeptide δ-(-α-aminoadipyl-L-cysteinyl-D-valine), the first intermediate of penicillin biosynthesis in P. chrysogenum. Similarly, CefP exerts a key function in the conversion of isopenicillin N to penicillin N in peroxisomes of A. chrysogenum. These TRP transporters are different from other TRP ion channels of Giberella zeae that belong to the Yvc1 class of yeast TRPs. Recent advances in filamentous fungi indicate that the cytosolic calcium concentration signal is connected to the calcitonin/calcineurin signal transduction cascade that controls the expression of genes involved in the subcellular translocation of intermediates during fungal metabolite biosynthesis. These advances open new possibilities to enhance the expression of important biosynthetic genes in fungi.

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3