Effective Free-Driving Region Detection for Mobile Robots by Uncertainty Estimation Using RGB-D Data

Author:

Nguyen Toan-KhoaORCID,Nguyen Phuc Thanh-ThienORCID,Nguyen Dai-DongORCID,Kuo Chung-HsienORCID

Abstract

Accurate segmentation of drivable areas and road obstacles is critical for autonomous mobile robots to navigate safely in indoor and outdoor environments. With the fast advancement of deep learning, mobile robots may now perform autonomous navigation based on what they learned in the learning phase. On the other hand, existing techniques often have low performance when confronted with complex situations since unfamiliar objects are not included in the training dataset. Additionally, the use of a large amount of labeled data is generally essential for training deep neural networks to achieve good performance, which is time-consuming and labor-intensive. Thus, this paper presents a solution to these issues by proposing a self-supervised learning method for the drivable areas and road anomaly segmentation. First, we propose the Automatic Generating Segmentation Label (AGSL) framework, which is an efficient system automatically generating segmentation labels for drivable areas and road anomalies by finding dissimilarities between the input and resynthesized image and localizing obstacles in the disparity map. Then, we train RGB-D datasets with a semantic segmentation network using self-generated ground truth labels derived from our method (AGSL labels) to get the pre-trained model. The results showed that our AGSL achieved high performance in labeling evaluation, and the pre-trained model also obtains certain confidence in real-time segmentation application on mobile robots.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference32 articles.

1. Self-Supervised Drivable Area and Road Anomaly Segmentation Using RGB-D Data For Robotic Wheelchairs

2. Detection and retrieval of out-of-distribution objects in semantic segmentation;Oberdiek;Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops,2020

3. Prediction error meta classification in semantic segmentation: Detection via aggregated dispersion measures of softmax probabilities;Rottmann;Proceedings of the 2020 International Joint Conference on Neural Networks (IJCNN),2020

4. Pixel-wise anomaly detection in complex driving scenes;Di Biase;Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2021

5. Complex ground plane detection based on v-disparity map in off-road environment;Yiruo;Proceedings of the 2013 IEEE Intelligent Vehicles Symposium (IV),2013

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3