Efficient Feature-Selection-Based Stacking Model for Stress Detection Based on Chest Electrodermal Activity

Author:

Almadhor Ahmad1ORCID,Sampedro Gabriel Avelino23ORCID,Abisado Mideth4,Abbas Sidra5ORCID

Affiliation:

1. Department of Computer Engineering and Networks, College of Computer and Information Sciences, Jouf University, Sakaka 72388, Saudi Arabia

2. Faculty of Information and Communication Studies, University of the Philippines Open University, Los Baños 4031, Philippines

3. Center for Computational Imaging and Visual Innovations, De La Salle University, Manila 1004, Philippines

4. College of Computing and Information Technologies, National University, Manila 1008, Philippines

5. Department of Computer Science, COMSATS University, Islamabad 22060, Pakistan

Abstract

Contemporary advancements in wearable equipment have generated interest in continuously observing stress utilizing various physiological indicators. Early stress detection can improve healthcare by lessening the negative effects of chronic stress. Machine learning (ML) methodologies have been modified for healthcare equipment to monitor user health situations utilizing sufficient user information. Nevertheless, more data are needed to make applying Artificial Intelligence (AI) methodologies in the medical field easier. This research aimed to detect stress using a stacking model based on machine learning algorithms using chest-based features from the Wearable Stress and Affect Detection (WESAD) dataset. We converted this natural dataset into a convenient format for the suggested model by performing data visualization and preprocessing using the RESP feature and feature analysis using the Z-score, SelectKBest feature, the Synthetic Minority Over-Sampling Technique (SMOTE), and normalization. The efficiency of the proposed model was estimated regarding accuracy, precision, recall, and F1-score. The experimental outcome illustrated the efficacy of the proposed stacking technique, achieving 0.99% accuracy. The results revealed that the proposed stacking methodology performed better than traditional methodologies and previous studies.

Funder

Research and Innovation, Ministry of Education in Saudi Arabia

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3