Falling and Drowning Detection Framework Using Smartphone Sensors

Author:

Alqahtani Abdullah1ORCID,Alsubai Shtwai1ORCID,Sha Mohemmed1ORCID,Peter Veselý2ORCID,Almadhor Ahmad S.3ORCID,Abbas Sidra4ORCID

Affiliation:

1. College of Computer Engineering and Sciences, Prince Sattam Bin Abdulaziz University, AlKharj, Saudi Arabia

2. Information Systems Department, Faculty of Management, Comenius University, Bratislava, Odbojárov 10 82005, Bratislava 25, Slovakia

3. College of Computer and Information Sciences, Jouf University, Sakakah, Saudi Arabia

4. Department of Computer Science, Comsats University, Sahiwal, Pakistan

Abstract

Advancements in health monitoring using smartphone sensor technologies have made it possible to quantify the functional performance and deviations in an individual’s routine. Falling and drowning are significant unnatural causes of silent accidental deaths, which require an ambient approach to be detected. This paper presents the novel ambient assistive framework Falling and Drowning Detection (FaDD) for falling and drowning detection. FaDD perceives input from smartphone sensors, such as accelerometer, gyroscope, magnetometer, and GPS, that provide accurate readings of the movement of an individual’s body. FaDD hierarchically recognizes the falling and drowning actions by applying the machine learning model. The approach activates embedding, in a smartphone application, to notify emergency alerts to various stakeholders (i.e., guardian, rescue, and close circle community) about drowning of an individual. FaDD detects falling, drowning, and routine actions with good accuracy of 98%. Furthermore, the FaDD framework enhances coordination to provide more efficient and reliable healthcare services to people.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3