Artificial Intelligence Algorithms for Discovering New Active Compounds Targeting TRPA1 Pain Receptors

Author:

Mihai Dragos PaulORCID,Trif Cosmin,Stancov Gheorghe,Radulescu Denise,Nitulescu George MihaiORCID

Abstract

Transient receptor potential ankyrin 1 (TRPA1) is a ligand-gated calcium channel activated by cold temperatures and by a plethora of electrophilic environmental irritants (allicin, acrolein, mustard-oil) and endogenously oxidized lipids (15-deoxy-∆12, 14-prostaglandin J2 and 5, 6-eposyeicosatrienoic acid). These oxidized lipids work as agonists, making TRPA1 a key player in inflammatory and neuropathic pain. TRPA1 antagonists acting as non-central pain blockers are a promising choice for future treatment of pain-related conditions having advantages over current therapeutic choices A large variety of in silico methods have been used in drug design to speed up the development of new active compounds such as molecular docking, quantitative structure-activity relationship models (QSAR), and machine learning classification algorithms. Artificial intelligence methods can significantly improve the drug discovery process and it is an attractive field that can bring together computer scientists and experts in drug development. In our paper, we aimed to develop three machine learning algorithms frequently used in drug discovery research: feedforward neural networks (FFNN), random forests (RF), and support vector machines (SVM), for discovering novel TRPA1 antagonists. All three machine learning methods used the same class of independent variables (multilevel neighborhoods of atoms descriptors) as prediction of activity spectra for substances (PASS) software. The model with the highest accuracy and most optimal performance metrics was the random forest algorithm, showing 99% accuracy and 0.9936 ROC AUC. Thus, our study emphasized that simpler and robust machine learning algorithms such as random forests perform better in correctly classifying TRPA1 antagonists since the dimension of the dependent variables dataset is relatively modest.

Publisher

MDPI AG

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3