Molecular Discrimination and Phylogenetic Relationships of Physalis Species Based on ITS2 and rbcL DNA Barcode Sequence

Author:

Pere Katherine1,Mburu Kenneth2ORCID,Muge Edward K.1ORCID,Wagacha John Maina3,Nyaboga Evans N.1ORCID

Affiliation:

1. Department of Biochemistry, University of Nairobi, Nairobi P.O. Box 30197-00100, Kenya

2. Department of Life Sciences, South Eastern Kenya University, Kitui P.O. Box 170-90200, Kenya

3. Department of Biology, University of Nairobi, Nairobi P.O. Box 30197-00100, Kenya

Abstract

Plants of the genus Physalis are of economic interest because of their fleshy edible fruits with high nutritional value. Some species have high medicinal value with a long history of ethno-medicinal use to treat diverse diseases. There is therefore a need to correctly discriminate the different species of Physalis for proper utilization. Although most Physalis species have unique morphologies, their vegetative stages are identical, making it difficult to accurately identify them based on morphological characteristics. DNA barcoding has the potential to discriminate species accurately. In this study, ribulose bisphosphate carboxylase large (rbcL) and internal transcribed spacer 2 (ITS2) regions were used to discriminate Physalis species and to reveal their phylogenetic relationships and genetic diversity. Physalis plant samples were collected from seven counties in Kenya based on the availability of the germplasm. The voucher specimens were identified using the botanical taxonomy method and were deposited in the University of Nairobi herbarium. Genomic DNA was isolated from leaf samples of 64 Physalis accessions and used for PCR amplification and the sequencing of rbcL and ITS2 barcode regions. The discriminatory ability of the barcodes was based on BLASTn comparison, phylogenetic reconstruction and cluster analysis, and the determination of inter- and intra-specific distances. The nucleotide polymorphism, genetic diversity and distance of the identified Physalis species were determined using DnaSP and MEGA 11.0 software. Species discrimination was more robust using ITS2 sequences. The species identified and discriminated by ITS2 sequences were Physalis purpurea, Physalis peruviana and Physalis cordata. The rbcL sequences were only able to identify Physalis to the genus level. There was high interspecific and low intraspecific divergence within the identified Physalis species based on ITS2 sequences. The ITS2 barcode is an ideal DNA barcode for use in the discrimination of species, as well as in genetic diversity studies of Physalis accessions in Kenya.

Publisher

MDPI AG

Subject

General Arts and Humanities

Reference66 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3