Nonlinear Dynamics of a Resonant-Impact Dielectric Elastomer Actuator

Author:

Wu ChuangORCID,Cai AnjiangORCID,Gao Xing,Cao Chongjing

Abstract

In recent years, with the rapid development of soft robots, dielectric elastomer actuators (DEAs) as a novel type of soft actuators have been widely studied. However, DEAs often suffer from low instantaneous output force/power, especially in high payload damping conditions, which limits their applications in certain scenarios. Inspired by the vibro-impact mechanisms found in many engineering systems (e.g., pile driving and percussive drilling), a resonant-impact DEA system was proposed in the authors’ previous work to potentially address this limitation. However, due to the complex nonlinearities and unique electromechanically coupled forcing mechanism of DEAs, no nonlinear dynamic model was developed to perform systematic investigations and optimization. In this paper, a nonlinear dynamic model of the resonant-impact DEA system is developed by considering multiple nonlinearities, viscoelasticity, and electromechanical coupling. Using both a numerical model and extensive experiments, the nonlinear dynamics of the resonant-impact DEA system are studied in depth. The effects of several key parameters, including excitation voltage amplitude, constraint gap, constraint stiffness, and number of DEA layers, on the dynamic response of the system are characterized. The findings reported in this paper can provide guidance for the performance optimization of resonance-impact DEA systems and their applications.

Funder

National Natural Science Foundation of China

Guangdong Basic and Applied Basic Research Foundation

Shenzhen Science and Technology Program

Publisher

MDPI AG

Subject

Artificial Intelligence,Applied Mathematics,Industrial and Manufacturing Engineering,Human-Computer Interaction,Information Systems,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3