Abstract
The classic structure of a bacteriophage is commonly characterized by complex symmetry. The head of the structure features icosahedral symmetry, whereas the tail features helical symmetry. The phage virion protein (PVP), a type of bacteriophage structural protein, is an essential material of the infectious viral particles and is responsible for multiple biological functions. Accurate identification of PVPs is of great significance for comprehending the interaction between phages and host bacteria and developing new antimicrobial drugs or antibiotics. However, traditional experimental approaches for identifying PVPs are often time-consuming and laborious. Therefore, the development of computational methods that can efficiently and accurately identify PVPs is desired. In this study, we proposed a multi-classifier voting model called iPVP-MCV to enhance the predictive performance of PVPs based on their amino acid sequences. First, three types of evolutionary features were extracted from the position-specific scoring matrix (PSSM) profiles to represent PVPs and non-PVPs. Then, a set of baseline models were trained based on the support vector machine (SVM) algorithm combined with each type of feature descriptors. Finally, the outputs of these baseline models were integrated to construct the proposed method iPVP-MCV by using the majority voting strategy. Our results demonstrated that the proposed iPVP-MCV model was superior to existing methods when performing the rigorous independent dataset test.
Funder
National Natural Science Foundation of China
National Key Research and Development Program of China
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献