Seeker: alignment-free identification of bacteriophage genomes by deep learning

Author:

Auslander Noam1,Gussow Ayal B1ORCID,Benler Sean1,Wolf Yuri I1ORCID,Koonin Eugene V1ORCID

Affiliation:

1. National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA

Abstract

Abstract Recent advances in metagenomic sequencing have enabled discovery of diverse, distinct microbes and viruses. Bacteriophages, the most abundant biological entity on Earth, evolve rapidly, and therefore, detection of unknown bacteriophages in sequence datasets is a challenge. Most of the existing detection methods rely on sequence similarity to known bacteriophage sequences, impeding the identification and characterization of distinct, highly divergent bacteriophage families. Here we present Seeker, a deep-learning tool for alignment-free identification of phage sequences. Seeker allows rapid detection of phages in sequence datasets and differentiation of phage sequences from bacterial ones, even when those phages exhibit little sequence similarity to established phage families. We comprehensively validate Seeker's ability to identify previously unidentified phages, and employ this method to detect unknown phages, some of which are highly divergent from the known phage families. We provide a web portal (seeker.pythonanywhere.com) and a user-friendly Python package (github.com/gussow/seeker) allowing researchers to easily apply Seeker in metagenomic studies, for the detection of diverse unknown bacteriophages.

Funder

NIH

Publisher

Oxford University Press (OUP)

Subject

Genetics

Reference51 articles.

1. Marine viruses and their biogeochemical and ecological effects;Fuhrman;Nature,1999

2. Virioplankton: viruses in aquatic ecosystems;Wommack;Microbiol. Mol. Biol. Rev.,2000

3. Viral metagenomics;Edwards;Nat. Rev. Microbiol.,2005

4. Viruses manipulate the marine environment;Rohwer;Nature,2009

5. Explaining microbial population genomics through phage predation;Rodriguez-Valera;Nat. Rev. Microbiol.,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3