Abstract
Both poor cooling methods and complex heat dissipation lead to prominent asymmetry in transformer temperature distribution. Both the operating life and load capacity of a power transformer are closely related to the winding hotspot temperature. Realizing accurate prediction of the hotspot temperature of transformer windings is the key to effectively preventing thermal faults in transformers, thus ensuring the reliable operation of transformers and accurately predicting transformer operating lifetimes. In this paper, a hot spot temperature prediction method is proposed based on the transformer operating parameters through the particle filter optimization support vector regression model. Based on the monitored transformer temperature, load rate, transformer cooling type, and ambient temperature, the hotspot temperature of a dry-type transformer can be predicted by a support vector regression method. The hyperparameters of the support vector regression are dynamically optimized here according to the particle filter to improve the optimization accuracy. The validity and accuracy of the proposed method are verified by comparing the proposed method with a traditional support vector regression method based on the real operating data of a 35 kV dry-type transformer.
Funder
National Key Research and Development Program of China
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献