Inversion Method for Transformer Winding Hot Spot Temperature Based on Gated Recurrent Unit and Self-Attention and Temperature Lag

Author:

Hao Yuefeng1,Zhang Zhanlong1ORCID,Liu Xueli12,Yang Yu1,Liu Jun3

Affiliation:

1. School of Electrical Engineering, Chongqing University, Chongqing 400044, China

2. Chengdu Power Supply Company, State Grid Sichuan Electric Power Company, Chengdu 610041, China

3. Electric Power Science Research Institute, Guizhou Power Grid Co., Ltd., Guiyang 550002, China

Abstract

The hot spot temperature of transformer windings is an important indicator for measuring insulation performance, and its accurate inversion is crucial to ensure the timely and accurate fault prediction of transformers. However, existing studies mostly directly input obtained experimental or operational data into networks to construct data-driven models, without considering the lag between temperatures, which may lead to the insufficient accuracy of the inversion model. In this paper, a method for inverting the hot spot temperature of transformer windings based on the SA-GRU model is proposed. Firstly, temperature rise experiments are designed to collect the temperatures of the entire side and top of the transformer tank, top oil temperature, ambient temperature, the cooling inlet and outlet temperatures, and winding hot spot temperature. Secondly, experimental data are integrated, considering the lag of the data, to obtain candidate input feature parameters. Then, a feature selection algorithm based on mutual information (MI) is used to analyze the correlation of the data and construct the optimal feature subset to ensure the maximum information gain. Finally, Self-Attention (SA) is applied to optimize the Gate Recurrent Unit (GRU) network, establishing the GRU-SA model to perceive the potential patterns between output feature parameters and input feature parameters, achieving the precise inversion of the hot spot temperature of the transformer windings. The experimental results show that considering the lag of the data can more accurately invert the hot spot temperature of the windings. The inversion method proposed in this paper can reduce redundant input features, lower the complexity of the model, accurately invert the changing trend of the hot spot temperature, and achieve higher inversion accuracy than other classical models, thereby obtaining better inversion results.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3