Optimal Data Transmission for WSNs with Data-Location Integration

Author:

Wu Shuiyan,Min Xiaofei,Li Jing

Abstract

Wireless sensor networks (WSNs) have good performance for data transmission, and the data transmission of sensor nodes has the function of symmetry. However, the wireless sensor nodes are facing great pressure in data transmission due to the increasing amount and types of data that easily cause premature energy consumption of some nodes and, thus, affects data transmission. Clustering algorithm is a common method to balance energy consumption, but the existing algorithms fail to balance the network oad effectively for big data transmission. Therefore, an optimal data transmission with data-location integration (ODTD-LI) is proposed for WSNs in this paper. For optimal data transmission, we update the network topology once for one round. In the proposed algorithm, we perform calculations of the optimal cluster heads, clustering and data transmission routing through three steps. We first deploy N homogeneous and symmetry nodes in a square area randomly and calculate the optimal number of cluster heads according to the node ocations. then, the optimal number of cluster heads, energy consumption, the distances and degrees of the nodes are taken into consideration during the clustering phase. Direct communication is carried out within a cluster, and the member nodes of the cluster pass the information directly to the cluster head. Lastly, an optimal hybrid routing from each cluster node to Sink is constructed for data transmission after clustering. The simulations verify the good performance of the proposed algorithm in view of the ifetime, average delay, coverage rate (CR) and oad balance of the network compared with the existing algorithms. Through the research conducted in this paper, we find that our work has good performance for selecting the hybrid routing in the network with the nodes randomly arranged.

Funder

Natural Fundation of Xianyang Normal University

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference36 articles.

1. Multisensor Adaptive Control System for IoT-Empowered Smart Lighting with Oblivious Mobile Sensors;Areg;ACM Trans. Sens. Netw.,2020

2. Towards felicitous decision making: An overview on challenges and trends of Big Data

3. Lightweight and practical node clustering authentication protocol for hierarchical wireless sensor networks;Shen;Int. J. Sens. Netw.,2018

4. A Survey on Energy-Efficient Strategies in Static Wireless Sensor Networks

5. Global evy flight of cuckoo search with particle swarm optimization for effective cluster head selection in wireless sensor network;Vijayalakshmi;Intell. Autom. Soft Comput.,2020

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3