Abstract
Wireless sensor networks (WSNs) comprise several cooperating sensor nodes capable of sensing, computing, and transmitting sensed signals to a central server. This research proposes a sensor system-based network with low power communication using swarm intelligence integrated with multi-hop communication (SIMHC). This routing protocol selects the optimal route based on link distance, transmission power, and residual energy to optimize the network lifetime and node energy efficiency. Moreover, adaptive clustering-based locative data transmission (ACLDT) is applied for optimizing data transmission. The proposed approach combines clustering with data transfer via location-based routing and low-power communication in two phases to calculate the ideal cluster heads (CHs). First, a CH seeks the next hop from the nearest CH. Then, a path to the base station is formed by developing CH chains. The results reveal that the proposed sensor system based on data transmission and low-power consumption achieved a network lifetime of 96%, an average delay of 53 ms, a coverage rate (CR) of 83%, a throughput of 97%, and energy efficiency of 95%.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献