Stakeholder-Informed Hydroclimate Scenario Modeling in the Lower Santa Cruz River Basin for Water Resource Management

Author:

Gupta Neha1ORCID,Bearup Lindsay2,Jacobs Katharine3ORCID,Halper Eve4ORCID,Castro Chris5,Chang Hsin-I5ORCID,Fonseca Julia6ORCID

Affiliation:

1. Arizona Institute for Resilience, University of Arizona, Tucson, AZ 85719, USA

2. Water, Environmental and Ecosystems Division, Bureau of Reclamation, Denver, CO 80215, USA

3. Center for Climate Adaptation Science and Solutions, University of Arizona, Tucson, AZ 85719, USA

4. Phoenix Area Office, Bureau of Reclamation, Glendale, AZ 85306, USA

5. Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ 85719, USA

6. Madrean Resources LLC, Tucson, AZ 85716, USA

Abstract

The Lower Santa Cruz River Basin Study (LSCRB Study) is a collaborative effort of regional and statewide water management stakeholders working with the US Bureau of Reclamation under the auspices of the 2009 SECURE Water Act. The impacts of climate change, land use, and population growth on projected water supply in the LSCRB were evaluated to (1) identify projected water supply and demand imbalances and (2) develop adaptation strategies to proactively respond over the next 40 years. A multi-step hydroclimate modeling and risk assessment process was conducted to assess a range of futures in terms of temperature, precipitation, runoff, soil moisture, and evapotranspiration, with a particular focus on implications for ecosystem health. Key hydroclimate modeling process decisions were informed by ongoing multi-stakeholder engagement. To incorporate the region’s highly variable precipitation pattern, the study used a numerical “weather generator” to develop ensembles of precipitation and temperature time series for input to surface hydrology modeling efforts. Hydroclimate modeling outcomes consistently included increasing temperatures, and generated information related to precipitation responses (season length and timing, precipitation amount) considered useful for evaluating potential ecosystem impacts. A range of risks was identified using the hydroclimate modeling outputs that allowed for development of potential adaptation strategies.

Funder

Bureau of Reclamation and non-federal partners

University of Arizona

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3