Multi-Branch Network for Color Image Denoising Using Dilated Convolution and Attention Mechanisms

Author:

Duong Minh-Thien1ORCID,Nguyen Thi Bao-Tran1,Lee Seongsoo2ORCID,Hong Min-Cheol3ORCID

Affiliation:

1. Department of Information and Telecommunication Engineering, Soongsil University, Seoul 06978, Republic of Korea

2. Department of Intelligent Semiconductor, Soongsil University, Seoul 06978, Republic of Korea

3. School of Electronic Engineering, Soongsil University, Seoul 06978, Republic of Korea

Abstract

Image denoising is regarded as an ill-posed problem in computer vision tasks that removes additive noise from imaging sensors. Recently, several convolution neural network-based image-denoising methods have achieved remarkable advances. However, it is difficult for a simple denoising network to recover aesthetically pleasing images owing to the complexity of image content. Therefore, this study proposes a multi-branch network to improve the performance of the denoising method. First, the proposed network is designed based on a conventional autoencoder to learn multi-level contextual features from input images. Subsequently, we integrate two modules into the network, including the Pyramid Context Module (PCM) and the Residual Bottleneck Attention Module (RBAM), to extract salient information for the training process. More specifically, PCM is applied at the beginning of the network to enlarge the receptive field and successfully address the loss of global information using dilated convolution. Meanwhile, RBAM is inserted into the middle of the encoder and decoder to eliminate degraded features and reduce undesired artifacts. Finally, extensive experimental results prove the superiority of the proposed method over state-of-the-art deep-learning methods in terms of objective and subjective performances.

Funder

Research and Development Program of the Ministry of Trade, Industry, and Energy

Korea Evaluation Institute of Industrial Technology

Korea Institute for Advancement of Technology

IC Design Education Center

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3