Robot Intelligent Grasp of Unknown Objects Based on Multi-Sensor Information

Author:

Ji Shan-Qian,Huang Ming-BaoORCID,Huang Han-Pang

Abstract

Robots frequently need to work in human environments and handle many different types of objects. There are two problems that make this challenging for robots: human environments are typically cluttered, and the multi-finger robot hand needs to grasp and to lift objects without knowing their mass and damping properties. Therefore, this study combined vision and robot hand real-time grasp control action to achieve reliable and accurate object grasping in a cluttered scene. An efficient online algorithm for collision-free grasping pose generation according to a bounding box is proposed, and the grasp pose will be further checked for grasp quality. Finally, by fusing all available sensor data appropriately, an intelligent real-time grasp system was achieved that is reliable enough to handle various objects with unknown weights, friction, and stiffness. The robots used in this paper are the NTU 21-DOF five-finger robot hand and the NTU 6-DOF robot arm, which are both constructed by our Lab.

Funder

HIWIN Technologies

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on 6DOF Pose Measurement Algorithm of Industrial Metal Workpiece Based on Binocular Vision;2024 39th Youth Academic Annual Conference of Chinese Association of Automation (YAC);2024-06-07

2. Design of and research on the robot arm recovery grasping system based on machine vision;Journal of King Saud University - Computer and Information Sciences;2024-04

3. Object Stiffness Discrimination from Fingertip Forces;Advances In Robotics - 6th International Conference of The Robotics Society;2023-07-05

4. Biomimetic Grasp Control of Robotic Hands Using Deep Learning;2023 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT);2023-05-22

5. Fusion of tactile and visual information in deep learning models for object recognition;Information Fusion;2023-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3