Learning from Imbalanced Datasets: The Bike-Sharing Inventory Problem Using Sparse Information

Author:

Ceccarelli Giovanni1,Cantelmo Guido2,Nigro Marialisa3ORCID,Antoniou Constantinos4ORCID

Affiliation:

1. Dott SAS, 75002 Paris, France

2. Department of Technology, Management and Economics, Technical University of Denmark, 2800 Lyngby, Denmark

3. Department of Civil, Computer and Aeronautical Engineering, Roma Tre University, 00146 Rome, Italy

4. Department of Mobility Systems Engineering, Technical University of Munich, 80333 Munich, Germany

Abstract

In bike-sharing systems, the inventory level is defined as the daily number of bicycles required to optimally meet the demand. Estimating these values is a major challenge for bike-sharing operators, as biased inventory levels lead to a reduced quality of service at best and a loss of customers and system failure at worst. This paper focuses on using machine learning (ML) classifiers, most notably random forest and gradient tree boosting, for estimating the inventory level from available features including historical data. However, while similar approaches adopted in the context of bike sharing assume the data to be well-balanced, this assumption is not met in the case of the inventory problem. Indeed, as the demand for bike sharing is sparse, datasets become biased toward low demand values, and systematic errors emerge. Thus, we propose to include a new iterative resampling procedure in the classification problem to deal with imbalanced datasets. The proposed model, tested on the real-world data of the Citi Bike operator in New York, allows to (i) provide upper-bound and lower-bound values for the bike-sharing inventory problem, accurately predicting both predominant and rare demand values; (ii) capture the main features that characterize the different demand classes; and (iii) work in a day-to-day framework. Finally, successful bike-sharing systems grow rapidly, opening new stations every year. In addition to changes in the mobility demand, an additional problem is that we cannot use historical information to predict inventory levels for new stations. Therefore, we test the capability of our model to predict inventory levels when historical data is not available, with a specific focus on stations that were not available for training.

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3