Spatial Cluster-Based Model for Static Rebalancing Bike Sharing Problem

Author:

Lahoorpoor Bahman,Faroqi HamedORCID,Sadeghi-Niaraki AbolghasemORCID,Choi Soo-Mi

Abstract

Bike sharing systems, as one of the complementary modes for public transit networks, are designed to help travelers in traversing the first/last mile of their trips. Different factors such as accessibility, availability, and fares influence these systems. The availability of bikes at certain times and locations is studied under rebalancing problem. The paper proposes a bottom-up cluster-based model to solve the static rebalancing problem in bike sharing systems. First, the spatial and temporal patterns of bike sharing trips in the network are investigated. Second, a similarity measure based on the trips between stations is defined to discover groups of correlated stations, using a hierarchical agglomerative clustering method. Third, two levels for rebalancing are assumed as intra-clusters and inter-clusters with the aim of keeping the balance of the network at the beginning of days. The intra-cluster level keeps the balance of bike distribution inside each cluster, and the inter-cluster level connects different clusters in order to keep the balance between the clusters. Finally, rebalancing tours are optimized according to the positive or negative balance at both levels of the intra-clusters and inter-clusters using a single objective genetic algorithm. The rebalancing problem is modeled as an optimization problem, which aims to minimize the tour length. The proposed model is implemented in one week of bike sharing trip data set in Chicago, USA. Outcomes of the model are validated for two subsequent weekdays. Analyses show that the proposed model can reduce the length of the rebalancing tour by 30%.

Funder

Korean MSIT (Ministry of Science and ICT) under the ITRC support program

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3