Abstract
Antimicrobial properties of silver have been known for a long time, but there is also cytotoxicity of high concentrations of silver. Therefore, it is important to select the concentration and shape of silver depending on the goals. The ideal wound dressing should ensure that the wound remains optimally moist, protected from infections, has no toxic compounds, and stimulates regeneration. In the present work, we obtained a series of polycaprolactone-based nanomaterials fabricated by electrospinning and incorporated with silver ions (up to 0.6 at.%). By adjusting the magnetron current (0.3 A) and implanter voltage (5 kV), the deposition of TiO2 and Ag+ implantation into PCL/PEO nanofibers was optimized to achieve implantation of Ag+ without damaging the nanofibrous structure of the biodegradable nanofibers. The obtained results allow us to predict significant protection properties of the developed material not only from mechanical influence but also thanks to the antimicrobial effect due to silver ions, which is important for chronic wounds and injuries with a large area of damage and can activate host cells proliferation.
Funder
Russian Foundation for Basic Research
Strategic Academic Leadership Program “Priority 2030” at NUST «MISiS».
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献