Silver Ions Incorporation into Nanofibers for Enhanced hMSC Viability

Author:

Sitnikova Natalya A.,Solovieva Anastasiya O.ORCID,Permyakova Elizaveta S.ORCID,Sheveyko Alexander N.,Shtansky Dmitry V.ORCID,Manakhov Anton M.ORCID

Abstract

Antimicrobial properties of silver have been known for a long time, but there is also cytotoxicity of high concentrations of silver. Therefore, it is important to select the concentration and shape of silver depending on the goals. The ideal wound dressing should ensure that the wound remains optimally moist, protected from infections, has no toxic compounds, and stimulates regeneration. In the present work, we obtained a series of polycaprolactone-based nanomaterials fabricated by electrospinning and incorporated with silver ions (up to 0.6 at.%). By adjusting the magnetron current (0.3 A) and implanter voltage (5 kV), the deposition of TiO2 and Ag+ implantation into PCL/PEO nanofibers was optimized to achieve implantation of Ag+ without damaging the nanofibrous structure of the biodegradable nanofibers. The obtained results allow us to predict significant protection properties of the developed material not only from mechanical influence but also thanks to the antimicrobial effect due to silver ions, which is important for chronic wounds and injuries with a large area of damage and can activate host cells proliferation.

Funder

Russian Foundation for Basic Research

Strategic Academic Leadership Program “Priority 2030” at NUST «MISiS».

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3