Geometrical Platform of Big Database Computing for Modeling of Complex Physical Phenomena in Electric Current Treatment of Liquid Metals

Author:

Zaporozhets Yuriy,Ivanov Artem,Kondratenko Yuriy

Abstract

According to the principles of multiphysical, multiscale simulation of phenomena and processes which take place during the electric current treatment of liquid metals, the need to create an adjustable and concise geometrical platform for the big database computing of mathematical models and simulations is justified. In this article, a geometrical platform was developed based on approximation of boundary contours using arcs for application of the integral equations method and matrix transformations. This method achieves regular procedures using multidimensional scale matrices for big data transfer and computing. The efficiency of this method was verified by computer simulation and used for different model contours, which are parts of real contours. The obtained results showed that the numerical algorithm was highly accurate based on the presented geometrical platform of big database computing and that it possesses a potential ability for use in the organization of computational processes regarding the modeling and simulation of electromagnetic, thermal, hydrodynamic, wave, and mechanical fields (as a practical case in metal melts treated by electric current). The efficiency of this developed approach for big data matrices computing and equation system formation was displayed, as the number of numerical procedures, as well as the time taken to perform them, were much smaller when compared to the finite element method used for the same model contours.

Publisher

MDPI AG

Subject

Information Systems and Management,Computer Science Applications,Information Systems

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3