The Novel Mathematical Model and Methodology for Computer Simulation of Magnetic Field in a Nonlinear Medium

Author:

ZAPOROZHETS Yu.ORCID

Abstract

Introduction. Magnetic devices of various types are used in production equipment. Designing and modernizing such equipment requires a signifi cant bulk of calculations of magnetic fi elds and parameters of magnetic devices. This task is diffi cult due to large dimensionality of the system of equations and nonlinear properties of magnetic materials.Problem Statement. Due to the nonlinearity of diff erential and integral equations on which these calculations are based, they need to be solved numerically by iterative methods, the convergence of which is often uncertain. This requires powerful computing tools and considerable time. Therefore, the problem of improving mathematical mo dels and increasing the computational effi ciency of the corresponding algorithms is relevant.Purpose. To develop a mathematical model of a magnetic fi eld in a nonlinear medium in the form of a surface integral equation for a quasilinear space and a computer modeling technique with increased computational effi ciency.Material and Methods. The material of the study is the mathematical models of the magnetic fi eld in a nonlinear medium of magnetic materials and the computational properties of the corresponding algorithms. The methods of vector analysis of diff erential operators and synthesis of modifi ed formulas in the magnetic fi eld equations have been used in the work.Results. The newest mathematical model of the magnetic fi eld in which the volumetric equation for a nonlinear medium is reduced to a surface equation in quasi-linear space, which reduces the dimensionality of data arrays by one order of magnitude and the number of computational operations by two orders of magnitude, has been substantiated. On this basis, a methodology for computer modeling of fi elds with the use of a unifi ed magnetization curve has been developed.Conclusions. The applicability of this methodology to various magnetic materials and its effi ciency have been confi rmed by the example of a model problem of practical importance for improving the algorithms for calculating and analyzing magnetic fi elds in magnetic systems with nonlinear elements.

Publisher

National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3