UAV-Based Quantification of Dynamic Lahar Channel Morphology at Volcán de Fuego, Guatemala

Author:

Mock Jerry C.1,Johnson Jeffrey B.1,Pineda Armando2,Bejar Gustavo3,Roca Amilcar4

Affiliation:

1. Department of Geosciences, Boise State University, Boise, ID 83725, USA

2. Independent Researcher, Guatemala City 01013, Guatemala

3. Department of Geological and Mining Engineering and Science, Michigan Technological University, Houghton, MI 49931, USA

4. Instituto Nacional de Sismología, Vulcanologia, Meteorologia e Hidrología (INSIVUMEH), Guatemala City 01013, Guatemala

Abstract

This study quantified erosional and depositional processes for secondary lahars in Las Lajas drainage at Volcán de Fuego, Guatemala, during the rainy season from May to October 2021. Abundant pyroclastic material from ongoing eruptive activity is remobilized seasonally during heavy precipitation, which can impact infrastructure and populations living near Fuego. Our region of focus was in an agricultural zone 6 to 10 km from the summit, surveyed with an unoccupied aerial vehicle (UAV) quadcopter at monthly intervals. Imagery was processed into overlapping time-lapse structure from motion digital elevation models (DEMs). DEMs were differenced to find volumetric changes as a function of the channel flow path distance (quantified in 500 m sections) to track channel morphology changes over time. The largest measured volume changes were a 490 m3/day loss in the upper section (~6 km from summit) and a 440 m3/day gain in the lower sections (~10 km from summit). We discussed how the natural channel’s constriction and widening of Las Lajas in more distal sections control the behavior and stability of the stream evolution. Above the constriction, the channel is primarily downcutting and meandering within an old flood plain, which had been filled in by pyroclastic materials deposited by the June 2018 paroxysm.

Funder

National Science Foundation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3