Information Leakage in Deep Learning-Based Hyperspectral Image Classification: A Survey

Author:

Feng Hao12ORCID,Wang Yongcheng1ORCID,Li Zheng12ORCID,Zhang Ning3ORCID,Zhang Yuxi12,Gao Yunxiao12

Affiliation:

1. Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

3. Department of Electronic Engineering, Tsinghua University, Beijing 100084, China

Abstract

In deep learning-based hyperspectral remote sensing image classification tasks, random sampling strategies are typically used to train model parameters for testing and evaluation. However, this approach leads to strong spatial autocorrelation between the training set samples and the surrounding test set samples, and some unlabeled test set data directly participate in the training of the network. This leaked information makes the model overly optimistic. Models trained under these conditions tend to overfit to a single dataset, which limits the range of practical applications. This paper analyzes the causes and effects of information leakage and summarizes the methods from existing models to mitigate the effects of information leakage. Specifically, this paper states the main issues in this area, where the issue of information leakage is addressed in detail. Second, some algorithms and related models used to mitigate information leakage are categorized, including reducing the number of training samples, using spatially disjoint sampling strategies, few-shot learning, and unsupervised learning. These models and methods are classified according to the sample-related phase and the feature extraction phase. Finally, several representative hyperspectral image classification models experiments are conducted on the common datasets and their effectiveness in mitigating information leakage is analyzed.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3