LMDFS: A Lightweight Model for Detecting Forest Fire Smoke in UAV Images Based on YOLOv7

Author:

Chen Gong1,Cheng Renxi1ORCID,Lin Xufeng1ORCID,Jiao Wanguo1ORCID,Bai Di2,Lin Haifeng1ORCID

Affiliation:

1. College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, China

2. College of Information Management, Nanjing Agricultural University, Nanjing 210095, China

Abstract

Forest fires pose significant hazards to ecological environments and economic society. The detection of forest fire smoke can provide crucial information for the suppression of early fires. Previous detection models based on deep learning have been limited in detecting small smoke and smoke with smoke-like interference. In this paper, we propose a lightweight model for forest fire smoke detection that is suitable for UAVs. Firstly, a smoke dataset is created from a combination of forest smoke photos obtained through web crawling and enhanced photos generated by using the method of synthesizing smoke. Secondly, the GSELAN and GSSPPFCSPC modules are built based on Ghost Shuffle Convolution (GSConv), which efficiently reduces the number of parameters in the model and accelerates its convergence speed. Next, to address the problem of indistinguishable feature boundaries between clouds and smoke, we integrate coordinate attention (CA) into the YOLO feature extraction network to strengthen the extraction of smoke features and attenuate the background information. Additionally, we use Content-Aware Reassembly of FEatures (CARAFE) upsampling to expand the receptive field in the feature fusion network and fully exploit the semantic information. Finally, we adopt SCYLLA-Intersection over Union (SIoU) loss as a replacement for the original loss function in the prediction phase. This substitution leads to improved convergence efficiency and faster convergence. The experimental results demonstrate that the LMDFS model proposed for smoke detection achieves an accuracy of 80.2% with a 5.9% improvement compared to the baseline and a high number of Frames Per Second (FPS)—63.4. The model also reduces the parameter count by 14% and Giga FLoating-point Operations Per second (GFLOPs) by 6%. These results suggest that the proposed model can achieve a high accuracy while requiring fewer computational resources, making it a promising approach for practical deployment in applications for detecting smoke.

Funder

Key Research and Development plan of Jiangsu Province

Jiangsu Modern Agricultural Machinery Equipment and Technology Demonstration and Promotion Project

Nanjing Modern Agricultural Machinery Equipment and Technological Innovation Demonstration Projects

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3