Human Motion Pattern Recognition and Feature Extraction: An Approach Using Multi-Information Fusion

Author:

Li XinORCID,Liu JinkangORCID,Huang YijingORCID,Wang DonghaoORCID,Miao YangORCID

Abstract

An exoskeleton is a kind of intelligent wearable device with bioelectronics and biomechanics. To realize its effective assistance to the human body, an exoskeleton needs to recognize the real time movement pattern of the human body in order to make corresponding movements at the right time. However, it is of great difficulty for an exoskeleton to fully identify human motion patterns, which are mainly manifested as incomplete acquisition of lower limb motion information, poor feature extraction ability, and complicated steps. Aiming at the above consideration, the motion mechanisms of human lower limbs have been analyzed in this paper, and a set of wearable bioelectronics devices are introduced based on an electromyography (EMG) sensor and inertial measurement unit (IMU), which help to obtain biological and kinematic information of the lower limb. Then, the Dual Stream convolutional neural network (CNN)-ReliefF was presented to extract features from the fusion sensors’ data, which were input into four different classifiers to obtain the recognition accuracy of human motion patterns. Compared with a single sensor (EMG or IMU) and single stream CNN or manual designed feature extraction methods, the feature extraction based on Dual Stream CNN-ReliefF shows better performance in terms of visualization performance and recognition accuracy. This method was used to extract features from EMG and IMU data of six subjects and input these features into four different classifiers. The motion pattern recognition accuracy of each subject under the four classifiers is above 97%, with the highest average recognition accuracy reaching 99.12%. It can be concluded that the wearable bioelectronics device and Dual Stream CNN-ReliefF feature extraction method proposed in this paper enhanced an exoskeleton’s ability to capture human movement patterns, thus providing optimal assistance to the human body at the appropriate time. Therefore, it can provide a novel approach for improving the human-machine interaction of exoskeletons.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Beijing

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deep Reinforcement Learning Control of an Avatar and Exoskeleton;2024 IEEE Research and Applications of Photonics in Defense Conference (RAPID);2024-08-14

2. Deep reinforcement learning to assess lower extremity movement intention and assist a rehabilitation exoskeleton;Disruptive Technologies in Information Sciences VIII;2024-06-06

3. Cross-Modality Self-Attention and Fusion-Based Neural Network for Lower Limb Locomotion Mode Recognition;IEEE Transactions on Automation Science and Engineering;2024

4. Upper Limb Movement Prediction Based on Segmented sEMG Signals;IEEE Access;2024

5. Unique Automated Lower Limb Design for Monoplegia Using Emg Sensor Signals;Learning and Analytics in Intelligent Systems;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3