Zero-Shot Traffic Sign Recognition Based on Midlevel Feature Matching

Author:

Gan Yaozong1ORCID,Li Guang2ORCID,Togo Ren3ORCID,Maeda Keisuke3ORCID,Ogawa Takahiro3ORCID,Haseyama Miki3ORCID

Affiliation:

1. Graduate School of Information Science and Technology, Hokkaido University, N-14, W-9, Kita-ku, Sapporo 060-0814, Japan

2. Education and Research Center for Mathematical and Data Science, Hokkaido University, N-12, W-7, Kita-Ku, Sapporo 060-0812, Japan

3. Faculty of Information Science and Technology, Hokkaido University, N-14, W-9, Kita-ku, Sapporo 060-0814, Japan

Abstract

Traffic sign recognition is a complex and challenging yet popular problem that can assist drivers on the road and reduce traffic accidents. Most existing methods for traffic sign recognition use convolutional neural networks (CNNs) and can achieve high recognition accuracy. However, these methods first require a large number of carefully crafted traffic sign datasets for the training process. Moreover, since traffic signs differ in each country and there is a variety of traffic signs, these methods need to be fine-tuned when recognizing new traffic sign categories. To address these issues, we propose a traffic sign matching method for zero-shot recognition. Our proposed method can perform traffic sign recognition without training data by directly matching the similarity of target and template traffic sign images. Our method uses the midlevel features of CNNs to obtain robust feature representations of traffic signs without additional training or fine-tuning. We discovered that midlevel features improve the accuracy of zero-shot traffic sign recognition. The proposed method achieves promising recognition results on the German Traffic Sign Recognition Benchmark open dataset and a real-world dataset taken from Sapporo City, Japan.

Funder

JSPS KAKENHI

establishment of university fellowships towards the creation of science technology innovation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3