A Novel Frame-Selection Metric for Video Inpainting to Enhance Urban Feature Extraction

Author:

Feng Yuhu1ORCID,Zhang Jiahuan1ORCID,Li Guang2ORCID,Togo Ren3ORCID,Maeda Keisuke4ORCID,Ogawa Takahiro3ORCID,Haseyama Miki3ORCID

Affiliation:

1. Graduate School of Information Science and Technology, Hokkaido University, Sapporo 060-0814, Japan

2. Education and Research Center for Mathematical and Data Science, Hokkaido University, Sapporo 060-0812, Japan

3. Faculty of Information Science and Technology, Hokkaido University, Sapporo 060-0814, Japan

4. Data-Driven Interdisciplinary Research Emergence Department, Hokkaido University, Sapporo 060-0813, Japan

Abstract

In our digitally driven society, advances in software and hardware to capture video data allow extensive gathering and analysis of large datasets. This has stimulated interest in extracting information from video data, such as buildings and urban streets, to enhance understanding of the environment. Urban buildings and streets, as essential parts of cities, carry valuable information relevant to daily life. Extracting features from these elements and integrating them with technologies such as VR and AR can contribute to more intelligent and personalized urban public services. Despite its potential benefits, collecting videos of urban environments introduces challenges because of the presence of dynamic objects. The varying shape of the target building in each frame necessitates careful selection to ensure the extraction of quality features. To address this problem, we propose a novel evaluation metric that considers the video-inpainting-restoration quality and the relevance of the target object, considering minimizing areas with cars, maximizing areas with the target building, and minimizing overlapping areas. This metric extends existing video-inpainting-evaluation metrics by considering the relevance of the target object and interconnectivity between objects. We conducted experiment to validate the proposed metrics using real-world datasets from Japanese cities Sapporo and Yokohama. The experiment results demonstrate feasibility of selecting video frames conducive to building feature extraction.

Funder

JSPS KAKENHI

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3