Effect of Mineral Salt Blocks Containing Sodium Bicarbonate or Selenium on Ruminal pH, Rumen Fermentation and Milk Production and Composition in Crossbred Dairy Cows

Author:

Insoongnern Hathaichanok,Srakaew Wuttikorn,Prapaiwong Tipwadee,Suphrap Napongphot,Potirahong SaisamornORCID,Wachirapakorn ChalongORCID

Abstract

Ruminal pH is an important physiological parameter that regulates microbe activity; optimizing ruminal pH may improve rumen fermentation and milk production. The purpose of this experiment was to determine the effect of sodium bicarbonate (NaHCO3) or selenium (Se) in mineral salt block (MSB) supplementation on ruminal pH, rumen fermentation, milk yield and composition in Holstein Friesian crossbred dairy cows. Four crossbred dairy cows with an initial weight of 456 ± 6 kg in mid-lactation were assigned at random using a 4 × 4 Latin square design. The experiments were divided into four periods, each lasting 21 days. Each cow was fed a basal diet supplemented with a different type of mineral salt block: a control with no MSB supplementation, and MSB groups with MSB containing NaHCO3 (MSB-Na), MSB containing Se (MSB-Se), and conventional commercial MSB (MSB-Com). MSB-Na contained NaHCO3 (500 g/kg) to prevent acidosis, MSB-Se contained organic Se (15 mg/kg) as an antioxidant, and MSB-Com was a positive control mineral salt block. The results show that there was no significant difference in feed intake between treatments, but there was a significant difference in mineral salt intake between treatments (p < 0.05). Supplementing mineral blocks had no effect on nutrient intake or apparent digestibility (p > 0.05). Ruminal pH was not different between treatments at 0 and 1 h post-feeding, but at 2 and 4 h post-feeding, ruminal pH in cows fed MSB-Na and MSB-Se was significantly higher (p < 0.05) than it was in cows fed MSB-Com and the control. Total volatile fatty acid (VFA), acetic, propionic, butyric, and ammonia nitrogen and blood urea nitrogen were not influenced by mineral blocks supplementation. Milk yield, milk composition and energy-corrected milk (ECM) were not affected by supplementing mineral blocks. However, compared with the control, the somatic cell count (SCC) in the milk was reduced (p < 0.05) by supplementation with the mineral salt block. Based on the results of the experiments, it was concluded that MSB-Na or MSB-Se supplementation improved ruminal pH while having no effect on feed intake, rumen fermentation, milk yield, or composition, though it did reduce SCC in milk. However, additional research should be conducted to investigate the effect of MSB on rumen ecology and milk production in dairy cows fed a high-concentrate diet.

Publisher

MDPI AG

Subject

General Veterinary

Reference49 articles.

1. Zinc Effect on milk somatic cell count in dairy cows;Davidov;Acta Sci. Vet.,2014

2. Trace minerals status of feeds and fodders in Junagadh district of Gujarat;Garg;Indian J. Dairy Sci.,2002

3. Assessing Minerals Status of Dairy Animals in South-West Zone of Punjab

4. Effect of dietary sodium bicarbonate supplementation on fermentation characteristics and ciliate protozoal population in rumen of lambs

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3