The Neural Network Classifier Works Efficiently on Searching in DQN Using the Autonomous Internet of Things Hybridized by the Metaheuristic Techniques to Reduce the EVs’ Service Scheduling Time

Author:

M. Abed Ahmed,AlArjani AliORCID

Abstract

Since the rules and regulations strongly emphasize environmental preservation and greenhouse gas GHG reduction, researchers have progressively noticed a shift in the transportation means toward electromobility. Several challenges must be resolved to deploy EVs, beginning with improving network accessibility and bidirectional interoperability, reducing the uncertainty related to the availability of suitable charging stations on the trip path and reducing the total service time. Therefore, suggesting DQN supported by AIoT to pair EVs’ requests and station invitations to reduce idle queueing time is crucial for long travel distances. The author has written a proposed methodology in MATLAB to address significant parameters such as the battery charge level, trip distance, nearby charging stations, and average service time. The effectiveness of the proposed methodology is derived from hybridizing the meta-heuristic techniques in searching DQN learning steps to obtain a solution quickly and improve the servicing time by 34%, after solving various EV charging scheduling difficulties and congestion control and enabling EV drivers to policy extended trips. The work results obtained from more than 2145 training hypothetical examples for EVs’ requests were compared with the Bayesian Normalized Neural Network (BASNNC) algorithm, which hybridize the Beetle Antennae Search and Neural Network Classifier, and with other methods such as Grey Wolf Optimization (GWO) and Sine-cosine and Whale optimization, revealing that the mean overall comparison efficiencies in error reduction were 72.75%, 58.7%, and 18.2% respectively.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference59 articles.

1. Planning using a temporal world model;Allen;Proceedings of the Eighth International Joint Conference on Artificial Intelligence,1983

2. Slot Models for Schedulers Enhanced by planning Capabilities;Bartak;Proceedings of the 19th Workshop of the UK Planning and Scheduling Special Interest Group,2000

3. Uncertainty in Planning: Adapting the framework of Game Theory;Marsay;Proceedings of the 19th Workshop of the UK Planning and Scheduling Special Interest Group,2000

4. Knowledge-based approaches for scheduling problems: a survey

5. Reinforcement Learning Based Energy Management Algorithm for Smart Energy Buildings

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3