Abstract
A smart grid facilitates more effective energy management of an electrical grid system. Because both energy consumption and associated building operation costs are increasing rapidly around the world, the need for flexible and cost-effective management of the energy used by buildings in a smart grid environment is increasing. In this paper, we consider an energy management system for a smart energy building connected to an external grid (utility) as well as distributed energy resources including a renewable energy source, energy storage system, and vehicle-to-grid station. First, the energy management system is modeled using a Markov decision process that completely describes the state, action, transition probability, and rewards of the system. Subsequently, a reinforcement-learning-based energy management algorithm is proposed to reduce the operation energy costs of the target smart energy building under unknown future information. The results of numerical simulation based on the data measured in real environments show that the proposed energy management algorithm gradually reduces energy costs via learning processes compared to other random and non-learning-based algorithms.
Funder
Korea Institute of Energy Technology Evaluation and Planning (KETEP)
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
108 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献