Numerical Investigation of Tip Leakage Vortex Cavitating Flow in a Waterjet Pump with Emphasis on Flow Characteristics and Energy Features

Author:

Lv Shujian,Wang XinchengORCID,Cheng HuaiyuORCID,Ji BinORCID

Abstract

The Delayed Detached Eddy Simulation (DDES) turbulence model was coupled with a homogeneous cavitation model to analyze the tip-leakage vortex (TLV) cavitating-flow characteristics in a waterjet pump. The numerical results agree well with experimental data. The results show that the vortex evolution in the waterjet pump has three stages, which is similar to that around a hydrofoil, but the vorticity variations in the waterjet pump are more complicated. The relative-vorticity-transport equation was then applied to find the reason for the differences between the vorticity variation observed in the waterjet pump and that around a hydrofoil. The results indicate that the drastic fusion process of the TSV cavity and the TLV cavity in the waterjet pump resulted in the formation of triangular cavitation region near the blade tip that is difficult to reproduce by stationary hydrofoil simulation. This fusion process caused the local variation of fluid volume and further affected the vorticity transport. The entropy-production evaluation method considering the phase transition was then used to analyze the dissipation losses in the complex cavitation region. The results indicate that the drastic fusion process of the TSV cavity and the TLV cavity significantly influenced the entropy production rate distributions and enhanced the disturbance of the flow field. In addition, severe phase transition occurs in the drastic fusion region accompanied by huge phase-transition losses.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3