Activation Energy and Second Order Slip in Bioconvection of Oldroyd-B Nanofluid over a Stretching Cylinder: A Proposed Mathematical Model

Author:

Tlili Iskander,Waqas H.ORCID,Almaneea Abulmajeed,Khan Sami Ullah,Imran M.ORCID

Abstract

The thermal performances based on the interaction of nanoparticles are the topic of great interest in recent years. In the current continuation, we have utilized the activation energy and thermal radiation consequences in the bioconvection flow of magnetized Oldroyd-B nanoparticles over a stretching cylinder. As a novelty, the second order slip features (Wu’s slip) and convective Nield boundary assumptions are also introduced for the flow situation. The heat performances of nanofluids are captured with an evaluation of the famous Buongiorno’s model which enables us to determine the attractive features of Brownian motion and thermophoretic diffusion. The suggested thermal system is based on the flow velocity, nanoparticles temperature, nanoparticles volume fraction and motile microorganisms. The governing flow equations for the flow problem are constituted with relevant references for which numerically solution is developed via shooting algorithm. A detailed graphically analysis for the assisted flow problem is performed in view of the involved parameters. Although some studies are available in the literature which deals with the flow of various fluids over-stretching cylinder, the phenomenon of bioconvection and other interesting features are not reported yet. Therefore, present scientific computations are performed to fill this gap and the reported results can be more useful for the enhancement of thermal extrusion processes, solar energy systems, and biofuels.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 66 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3