Buongiorno’s Nanofluid Model over a Curved Exponentially Stretching Surface

Author:

Alblawi Adel,Malik Muhammad Yousaf,Nadeem Sohail,Abbas NadeemORCID

Abstract

We considered the steady flow of Buongiorno’s model over a permeable exponentially stretching channel. The mathematical model was constructed with the assumptions on curved channels. After applying the boundary layer approximation on the Navier–Stocks equation, we produced nonlinear partial differential equations. These equations were converted into a system of non-dimensional ordinary differential equations through an appropriate similarity transformation. The dimensionless forms of the coupled ordinary differential equations were elucidated numerically through boundary value problem fourth order method. This method gains fast convergence as compared to other method such as the shooting method and the Numerical Solution of Differential Equations Mathematica method. The influence of the governing parameters which are involved in ordinary differential equations are highlighted through graphs while R e s 1 / 2 C f , R e s 1 / 2 N u s , and R e s − 1 / 2 S h s are highlighted through the tables. Our interest of study was to analyze the heat transfer rate of nanofluids. Surprisingly, for momentum boundary layer thickness, thermal boundary layer thickness and solutal boundary layer thickness became larger when λ > 0 , as compared to the case when λ < 0 .

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3