Numerical Investigation of Design and Operating Parameters of Thermal Gradient Continuous-Flow PCR Microreactor Using One Heater

Author:

Perwez UsamaORCID,Aziz Imran,Ahmed Faisal,Raza Khan Mohsin

Abstract

To respond to the dire need for miniaturization and process simplification of continuous-flow PCR (CF-PCR) device, this paper represents design and operation guide of a novel metal alloy assisted hybrid microdevice (polydimethylsiloxane (PDMS) and glass) for CF-PCR employing one heater. In this research, the specific objectives are to determine whether one heater chip design will be flexible enough when the size of DNA base pair is varied and to investigate whether one heater CF-PCR device will be able to resolve the longstanding problem of thermal crosstalk. Furthermore, the parametric study is performed to determine which of the fourteen parameters have the greatest impact on the performance of one heater CF-PCR device. The main objective of this parametric study is to distinguish between the parameters that are either critical to the chip performance or can be freely specified. It is found that substrate thickness, flow rate, channel spacing, aspect ratio, channel pass length and external heat transfer coefficient are the most limiting parameters that can either improve or deteriorate the chip’s thermal performance. Overall, the impact of design and operating parameters are observed to be least on thermocycling profile at low Reynolds number (≤0.37 Re). However, in addition to the primary metric advantages of CF-PCR, one heater chip design helps in minimizing the thermal crosstalk effects by a factor of 4 in comparison to dual heater PCR while still maintaining a critical criteria of chip flexibility in terms of handling various sizes of DNA fragments. Hence, the proposed scheme paves the way for low-cost point-of-care diagnostics, system integration, and device miniaturization, realizing a portable microfluidic device applicable for on-site and direct field uses.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3