Multi-objective optimisation of polymerase chain reaction continuous flow systems

Author:

Zagklavara FoteiniORCID,Jimack Peter K.,Kapur Nikil,Querin Osvaldo M.,Thompson Harvey M.

Abstract

AbstractA surrogate-enabled multi-objective optimisation methodology for a continuous flow Polymerase Chain Reaction (CFPCR) systems is presented, which enables the effect of the applied PCR protocol and the channel width in the extension zone on four practical objectives of interest, to be explored. High fidelity, conjugate heat transfer (CHT) simulations are combined with Machine Learning to create accurate surrogate models of DNA amplification efficiency, total residence time, total substrate volume and pressure drop throughout the design space for a practical CFPCR device with sigmoid-shape microfluidic channels. A series of single objective optimisations are carried out which demonstrate that DNA concentration, pressure drop, total residence time and total substrate volume within a single unitcell can be improved by up to $$\sim$$ 5.7%, $$\sim$$ 80.5%, $$\sim$$ 17.8% and $$\sim$$ 43.2% respectively, for the practical cases considered. The methodology is then extended to a multi-objective problem, where a scientifically-rigorous procedure is needed to allow designers to strike appropriate compromises between the competing objectives. A series of multi-objective optimisation results are presented in the form of a Pareto surface, which show for example how manufacturing and operating cost reductions from device miniaturisation and reduced power consumption can be achieved with minimal impact on DNA amplification efficiency. DNA amplification has been found to be strongly related to the residence time in the extension zone, but not related to the residence times in denaturation and annealing zones.

Funder

Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

Molecular Biology,Biomedical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3