Modeling and Analysis of the Noise Performance of the Capacitive Sensing Circuit with a Differential Transformer

Author:

Xie Yafei,Fan Ji,Zhao Chun,Yan Shitao,Hu Chenyuan,Tu LiangchengORCID

Abstract

Capacitive sensing is a key technique to measure the test mass movement with a high resolution for space-borne gravitational wave detectors, such as Laser Interferometer Space Antenna (LISA) and TianQin. The capacitance resolution requirement of TianQin is higher than that of LISA, as the arm length of TianQin is about 15 times shorter. In this paper, the transfer function and capacitance measurement noise of the circuit are modeled and analyzed. Figure-of-merits, including the product of the inductance L and the quality factor Q of the transformer, are proposed to optimize the transformer and the capacitance measurement resolution of the circuit. The LQ product improvement and the resonant frequency augmentation are the key factors to enhance the capacitance measurement resolution. We fabricated a transformer with a high LQ product over a wide frequency band. The evaluation showed that the transformer can generate a capacitance resolution of 0.11 aF/Hz1/2 at a resonant frequency of 200 kHz, and the amplitude of the injection wave would be 0.6 V. This result supports the potential application of the proposed transformer in space-borne gravitational wave detection and demonstrates that it could relieve the stringent requirements for other parameters in the TianQin mission.

Funder

The National Key Research and Development Program of China

Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Reference29 articles.

1. A Survey on Gas Sensing Technology

2. Review of Recent Inkjet-Printed Capacitive Tactile Sensors

3. GRACE and GOCE: Mission Concepts and Simulations;Balmino;Bollettino di Geofisica Teorica ed Applicata,1999

4. CHAMP, GRACE, GOCE Instruments and Beyond;Touboul,2012

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3