Noise and thermal performance of a sub-attofarad capacitance sensor for precision measurements, with applications in gravitational wave detectors

Author:

Saraf S.1ORCID,Buchman S.2ORCID,Lui C. Y.1ORCID,Wang S.13ORCID,Lipa J.2

Affiliation:

1. SN&N Electronics, Inc. 1 , 1846 Stone Avenue, San Jose, California 95125, USA

2. Hansen Experimental Physics Laboratory 2 , Stanford, California 95038, USA

3. Hainan Tropical Ocean University 3 , Sanya 572022, China

Abstract

We describe the design principles, fabrication, and characterization of a precision AC resonant capacitance bridge (RCB) sensor, based on a resonant differential planar printed circuit board transformer with a solid (ungapped) MnZn ferrite core, demonstrating a short-term sensitivity at 293 K of 0.225 ± 0.005 aF/√Hz at around 120 kHz resonance frequency and 1 Hz Fourier measurement frequency. At 120 K, the RCB short term noise sensitivity is 0.118 ± 0.005 aF/√Hz. We compare the ungapped configuration to five different RCBs: three with a core gap of 65 μm and two with a core gap of 130 μm. Their average room temperature short term noise sensitivities are 0.30 ± 0.01 and 0.45 ± 0.01 aF/√Hz, while the cryogenic operation of these transformers at 120 K resulted in averaged sensitivities of 0.23 ± 0.01 and 0.36 ± 0.01 aF/√Hz, respectively. Multi-hour room temperature runs, with one core of each of the three gap types, proved the stability of their long-term sensitivities of 0.234 ± 0.005, 0.338 ± 0.009, and 0.435 ± 0.010 aF/√Hz for the ungapped (40-h duration) and the 65 and 130 μm (28-h duration) cores, respectively. At 0.1 mHz, a critical frequency for space gravitational wave detectors, the respective sensitivities are 0.25 ± 0.02, 0.35 ± 0.02, and 0.53 ± 0.07 aF/√Hz. Measurements with the ungapped transformer configuration for temperatures from 325 to 349 K further validate the dependence of the noise model on temperature and permeability. The performance of our RCB with an ungapped core matches the calculated performance value and shows an improvement in signal-to-noise ratio of two or more compared with capacitance bridges developed for similar applications. A further factor of about two noise reductions is achieved by cooling to 120 K.

Funder

Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences

SN&N Electronics, Inc.

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3