Abstract
In order to maintain sustainable agriculture, the flow in irrigation systems needs to be managed remotely and finely to achieve efficient use of water resources. This research develops a flow measuring device that integrates measurement and control to achieve precise flow regulation under remote control. The device chooses the angular regulating valve as the actuation component to control the flow. By the experimental study of the valve body working characteristics, this paper (1) establishes the relationships among the pressure in front of the valve, the valve body opening and the pipeline flow; (2) establishes the relationship between the valve opening degree and the number of driving pulses of the stepper motor, and (3) designs the opening decision and flow measurement software. The experiment shows that the flow coefficient of the valve body is 84.61, and there is no leakage loss when closed. It also shows that the regulation curve matches the law of fast-opening features. The established relationship and the correlation coefficient between the performance parameters and the measured value are both greater than 0.99, indicating a decent performance of fitness. In a test where the pipeline pressures were 0.10, 0.20, and 0.30 MPa, the average duration of flow regulation was 62.48 s, with a maximum overshoot of 5%, and a maximum steady-state error of 6%. The experiment also showed that the higher the pressure is, the better the regulation effect is. The flow measurement error under varied pressure is below 3%. With its simple structure, fast flow regulation time, and high accuracy, this device meets the requirements of flow management in irrigation systems. It can be used in a variety of flow rate remote monitoring and control scenarios.
Funder
Ningxia Hui Autonomous Region Key R&D Program
National Key R&D Program Project
Shaanxi Province Key R&D Program
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction
Reference28 articles.
1. A review on monitoring and advanced control strategies for precision irrigation;Comput. Electron. Agric.,2020
2. Development Status of Agricultural Machinery Automation in my country;China Collect. Econ.,2021
3. Research status and development trend of fertilization equipment used in fertigation in China;J. Drain. Irrig. Mach. Eng.,2021
4. Evaluation of a decision support system for variable-rate irrigation in a humid region;Trans. Asabe,2020
5. Field Study of Variable Rate Irrigation Management in Humid Climates;Irrig. Drain.,2017
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献