Author:
Sui Ruixiu,O’Shaughnessy Susan A.,Evett Steven R.,Andrade-Rodriguez Alejandro,Baggard Jonnie
Abstract
HighlightsAn Irrigation Scheduling Supervisory Control and Data Acquisition (ISSCADA) system was tested against a soil electrical conductivity (EC) based method for variable-rate irrigation (VRI).Soil EC was used to create irrigation prescription in EC-based VRI.ISSCADA generated VRI prescriptions using canopy temperature, soil water content, and weather data.ISSCADA-based VRI reduced irrigation water use and increased irrigation water productivity.Abstract. Use of variable-rate irrigation (VRI) technology has the potential to improve irrigation water use efficiency (IWUE). VRI hardware is commercially available and can be implemented in any center pivot or lateral move irrigation system. However, practical methods and algorithms for creating VRI prescriptions have become the bottleneck in accelerating the adoption of VRI. An Irrigation Scheduling Supervisory Control and Data Acquisition (ISSCADA) system for VRI was evaluated for two years in a humid region in the Mississippi Delta. The ISSCADA system was used to manage irrigation of soybeans for two seasons. In field practice, the ISSCADA system scanned the field for canopy temperature and collected soil water data from time domain reflectometers and weather data from a nearby weather station. The ISSCADA system automatically generated VRI prescription maps. The maps were modified to include plots managed using soil electrical conductivity (EC) based VRI prescriptions. Test results indicated that there was no difference in crop yield between EC-based VRI and ISSCADA-based VRI management. However, ISSCADA-based VRI management reduced irrigation water use and increased irrigation water productivity in comparison with EC-based VRI. There is great potential for the use of ISSCADA for VRI in humid regions. Keywords: Canopy temperature, Soil electrical conductivity, Soil moisture sensor, Soil water sensor, Soybean, Variable rate irrigation.
Funder
USDA National Institute of Food and Agriculture
Publisher
American Society of Agricultural and Biological Engineers (ASABE)
Subject
Soil Science,Agronomy and Crop Science,Biomedical Engineering,Food Science,Forestry
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献